Context-aware Learning for Sentence-level Sentiment Analysis with Posterior Regularization

نویسندگان

  • Bishan Yang
  • Claire Cardie
چکیده

This paper proposes a novel context-aware method for analyzing sentiment at the level of individual sentences. Most existing machine learning approaches suffer from limitations in the modeling of complex linguistic structures across sentences and often fail to capture nonlocal contextual cues that are important for sentiment interpretation. In contrast, our approach allows structured modeling of sentiment while taking into account both local and global contextual information. Specifically, we encode intuitive lexical and discourse knowledge as expressive constraints and integrate them into the learning of conditional random field models via posterior regularization. The context-aware constraints provide additional power to the CRF model and can guide semi-supervised learning when labeled data is limited. Experiments on standard product review datasets show that our method outperforms the state-of-theart methods in both the supervised and semi-supervised settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contextual and Position-Aware Factorization Machines for Sentiment Classification

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but the...

متن کامل

Context-Assisted Sentiment Analysis

This paper explores how information regarding the context can assist in improving sentiment analysis performance. We postulate that context affects sentiment at two different levels: first at the domain level of the comment, and second, at the sentence-structure level. Noting this, we explore three ways of utilizing context in sentiment analysis. First, we study contextual assistance with respe...

متن کامل

Classification of Inconsistent Sentiment Words using Syntactic Constructions

An important problem in sentiment analysis are inconsistent words. We define an inconsistent word as a sentiment word whose dictionary polarity is reversed by the sentence context in which it occurs. We present a supervised machine learning approach to the problem of inconsistency classification, the problem of automatically distinguishing inconsistent from consistent sentiment words in context...

متن کامل

Deep Neural Networks with Massive Learned Knowledge

Regulating deep neural networks (DNNs) with human structured knowledge has shown to be of great benefit for improved accuracy and interpretability. We develop a general framework that enables learning knowledge and its confidence jointly with the DNNs, so that the vast amount of fuzzy knowledge can be incorporated and automatically optimized with little manual efforts. We apply the framework to...

متن کامل

Context incorporation using context - aware language features

This paper investigates the problem of context incorporation into human language systems and particular in Sentiment Analysis (SA) systems. So far, the analysis of how different features, when incorporated into such systems, improve their performance, has been discussed in a number of studies. However, a complete picture of their effectiveness remains unexplored. With this work, we attempt to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014